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Abstract: Nowadays there are many event-driven types of discrete control systems in practice, e.g., manufacturing
automation systems, industrial and welfare robots, networked control systems, and so forth. Therefore, in this paper,
the stability and (especially) security problems of event-driven control systems are considered. First, the lattice concept
based on ordered sets is reviewed in general. Then, integer lattice coordinates are introduced, and the relative stability
and boundedness (i.e., security) of event-driven discrete systems is investigated using multiple metrics and simultaneous
linear inequalities. Numeric examples of qualitative and quantitative problems in the three-dimensional space are given
to express visually and to clarify the stability and security of event-driven control systems.
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1. INTRODUCTION

At present, there are many event-driven types of dis-
crete systems in practice, e.g., manufacturing systems,
industrial and welfare robots, networked control systems
(e.g., popularly known as IoT), and so on. Therefore,
in this paper, the (finite-time) stability of event-driven
(in other words, event-based) control systems is studied.
First, the lattice concept based on ordered sets is reviewed
in general [1-4]. Then, integer lattice coordinates are in-
troduced, and the stability and security of event-driven
discrete control systems is analyzed using multiple met-
rics and simultaneous linear inequalities. Numerical ex-
amples in the three-dimensional space (because of the vi-
sual expression) will be given to clarify the relative sta-
bility and boundedness [5] (i.e., security) of event-driven
control systems.

2. ORDERED SETS AND LATTICES

A lattice is an ordered set E in which every pair of
elements (and hence every finite subset) has an infimum
(meet, ∧) and a supremum (join, ∨). Thus, we often de-
note a lattice by (L;∧,∨), (L;∧,∨,≤) or (L;∧,∨,�).
Here, ≤ (or ≥) is a quantitative relation and � (or �) is
a qualitative relation, and the former is read “less than or
equal” (or “greater than or equal”) and the latter is read,
for example, “precedes” (or “succeeds”) [6].

Covering relation and graph. In an ordered set (E;≤),
we say that x is covered by y (or that y covers x) if x < y
and there is no z ∈ E such that x < z < y. We denote
this by using the notation x � y Thus, points x and y that
satisfy x � y are also called adjacent.

The adjacent points x � y can be represented by us-
ing a diredted graph as shown in Fig. 1 (a). That is, we
join the points (vertices) representing x and y by a line
segment with an arrow (directed edge). However, instead
of drawing an arrow from x to y, we sometimes place y

† Yoshifumi Okuyama is the presenter of this paper.
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Fig. 1 Directed graph and Hasse diagram with two
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Fig. 2 Non-distributive sublattices.

higher than x and draw a line (without a arrow) between
them as shown in Fig. 1 (b). It is then understood that an
upward movement indicates succession (otherwise pre-
cession). Such a graphical representation is referred to as
a Hasse diagram.

Distributive and Modular laws. In the lattice theory, 1

the following propositions are important:
(1) A lattice L is said to be distributive if it satisfies
(∀x, y, z ∈ L) z ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

(2) A lattice L is said to be modular if it satisfies
(∀x, y, z ∈ L) x ≥ z ⇒ x∧ (y ∨ z) = (x∧ y)∨ z.

Although the modular law (2) can be derived from (1),
the converse is not always valid. Figures 2 (a) and (b)
show sublattices which are not distributive. Here, M3

is modular, however, it is not distributive. On the other

1The original meaning of a “lattice” is a structure of cross laths with
interstices serving as screen, door, etc (from C.O.D.). It corresponds
to a “koushi’ in Japanese traditional house. The word lattice in the
mathematical terms is translated into Japanese as “soku” or “koushi”.
It should be noted that the former is with respect to Set Theory and
Topology[4] and the latter is with respect to Geometry of Numbers[7]
(especially, in a two-dimensional plane). In this paper, both concepts
will be introduced.
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Fig. 3 Cubic and M3 lattices by Hasse diagram, and di-
rected graphs in the 3D coordinates.
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Fig. 4 Cubic and N5 lattices by Hasse diagram, and di-
rected graphs in the 3D coordinates.

Fig. 5 Hasse diagram for a 4D lattice.

hand, N5 is not modular and also not distributive. In the
literatures[2, 4], it is said that a lattice is distributive if
and only if it has no sublattice of either of these M3 and
N5 in Fig. 2.

Figures 3 and 4 show Hasse diagrams and directed
graphs of cubic lattices in the 3D coordinates 2. Here,
the ‘blue’ lines denote non-distributive (forbidden) lat-
tices M3 and N5. In either of the diagrams, if the dot-
ted line (edge) does not exist, the lattice will be unified
into a cubic lattice in the 3D orthogonal coordinates. In
general, any sublattice (without such dotted edges) sat-
isfies the above properties (1) and (2). Therefore, it can
be confirmed that a lattice in the usual (quantitative and
parallel) coordinates is distributive and modular. When
we consider a four-dimensional cube, the Hasse diagram
is given as shown in Fig. 5.

2In the diagrams and in the following examples, the discrete systems are
restricted in a 3D space, because the behavior of them can be expressed
visually. Of course, the ideas will be extended in the multi-dimensional
space.

Fig. 6 3D orthogonal lattice coordinates and state traces.

3. LATTICE COORDINATES

Based on the above premise, let us consider a lattice
constructed by qualitative ordered sets (e.g., events or
states), x0 ≺ x1 ≺ x2 ≺ · · · , where the relation ≺ is
a symbol that is read ”strictly precedes”. Obviously, the
ordered sets can be corresponded to quantitative numbers.
If the relations are covering ones (i.e., adjacent), the or-
dered sets can be replaced by simply integer numbers as
follows (i.e., a chain):

x0
i � x1

i � x2
i � · · · � xN

i

↓ ↓ ↓ ↓
0 1 2 · · · N

(1)

(i = 1, 2, · · · , n)

With respect to an ordered set of dimension three3,event-
series (or state-traces) will be given in a 3D space. Fig-
ure 6 shows an expression of the 3D lattice coordinates.
Here, a box drawn by ‘blue’ lines corresponds to Boolean
lattice[3].

The following example of (adjacent points) state-
traces is drawn by ‘purple’ lines in the figure.

(x0
1, x

0
2, x

0
3) � (x1

1, x
1
2, x

1
3) � (x2

1, x
2
2, x

2
3) · · ·

↓ ↓ ↓
(0, 0, 0) (1, 0, 0) (2, 0, 0) · · ·

· · · � (x11
1 , x11

2 , x11
3 ) � (x12

1 , x12
2 , x12

3 )
↓ ↓

· · · (4, 3, 4) (4, 4, 4)
(2)

These lines and vertices construct the lattice coordinates.
In Fig. 6, traces (1) and (2 are restricted only to the first
quadrant (i.e., x1 ≥ 0, x2 ≥ 0, and x3 ≥ 0). Of course, it
can be expanded to the quadrants with negative numbers.

An example of state-trace (finally periodic trace),

(x0
1, x

0
2, x

0
3) ≺ (x1

1, x
1
2, x

1
3) ≺ (x2

1, x
2
2, x

2
3) ≺ · · ·

↓ ↓ ↓
(0, 0, 0) (0, 1, 1) (0, 2, 2) · · ·

3The conccept is based on [4]
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· · · (x8
1, x

8
2, x

8
3) ≺ (x9

1, x
9
2, x

9
3) � (x10

1 , x10
2 , x10

3 )
↓ ↓ ↓

· · · (2, 4, 3) (1, 4, 2) (1, 4, 1)

is drawn with arrows by ‘magenta’ lines as shown in Fig.
6. Note that in this case the edges do not always connect
adjacent vertices. If the state traces adjacent vertices, the
edges will be drawn by ‘pink’ lines.

4. EVENT-DRIVEN DISCRETE
SYSTEMS AND STATE TRACES

In general, event-driven types of discrete systems can
be written as

x(tk+1) = f(x(tk),e(tk)), k = 0, 1, 2, . . . ,

x(tk) ∈ Z
n, f : Z

n × Z
m → Z

n.

In order to study the relative stability problem, we con-
sider the following semi-linear discrete systems.

x(tk+1) = Φ(tk+1, tk)x(tk) + f(x(tk),e(tk)). (3)

It is assumed that the transition matrix Φ(·, ·) is consid-
ered time-invariant and written as

P := Φ(tk+1, tk) ∈ Z
n×n, ∀k ∈ N. (4)

Recurrent Systems and 0-1 Matrices If we simplify
it only with respect to the system structure, the transition
matrix may be written as:

P ∈ I
n×n ⊆ Z

n×n, I := {−1, 0, 1}. (5)

When considering nonnegative entries, we will define the
following structure matrix [8, 9]:

P ∈ I+
n×n ⊆ Z

n×n, I+ := {0, 1}. (6)

A matrix each of whose entries is either 0 or 1 is called a
(0,1)-matrix[9]. As for third-order periodic systems, the
(0,1)-matrices are given by

P3 =

⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦ , PT

3 =

⎡
⎣

0 1 0
0 0 1
1 0 0

⎤
⎦ ,

and the directed graphs are as shown in Fig. 7 4. With re-
spect to fourth-order periodic systems, the (0,1)-matrices
are given by

P41 =

⎡
⎢⎣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎦ , P42 =

⎡
⎢⎣
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎦ , P43 =

⎡
⎢⎣
0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤
⎥⎦

PT
41 =

⎡
⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎦ , PT

42 =

⎡
⎢⎣
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎤
⎥⎦ , PT

43 =

⎡
⎢⎣
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎤
⎥⎦

and the directed graphs are as shown in Figs. 8 and 9.
By expanding (3), the following equation is obtained:

x(tk) = Pkx(t0)+
k∑

l=1

Pk−lf(x(tl−1,e(tl−1))). (7)

4It should be noted that the relationship between a directed graph and a
matrix expression corresponds to PT .

(a) (b)

Fig. 7 Directed graphs for P3 and PT
3 .

(a) (b) (c)

Fig. 8 Directed graphs for P41, P42, and P43.

(a) (b) (c)

Fig. 9 Directed graphs for PT
41, PT

42, and PT
43.

In any case, the nominal system can be given as follows:

x̄(tk) = Φ(tk, t0)x(t0) = Pkx(t0) ∈ Z
n. (8)

In this paper, the event-driven function f is simplified as

εii(tk) =
fi(x(tk),e(tk))

xi(tk)
∈ R. (9)

As for a matrix expression, the following can be written:

E(tk) = diag{ε11(tk) · · · εnn(tk)} (10)

On the basis of the above premises, (7) can be written as:

x(tk) = Pkx(t0)+
u∑

l=1

kPk−lE(tl−1)x(tl−1). (11)

Here, consider a new type of transition matrix, i.e.,

Ψ(k, l) := Pk−lE(tl−1).u (12)

Thus, (11) can be rewritten as follows:

x(tk) = x̄(tk) +
k∑

l=1

Ψ(k, l)x(tl−1), (13)

where x̄(tk) = Pkx(t0) is the nominal state response.
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5. MULTIPLE METRICS AND
INEQUALITIES

The metric in the state space (i.e., vector space) is usu-
ally defined by a scalar value. However, it may lead to
a severe condition for the stability of some kind of non-
linear systems. Therefore, we consider the metric (i.e.,
norm) for each element of the state as follows:

‖xi(tk)‖�∞ := sup
1≤l≤k

|xi(tl)| ∈ Z+. (14)

When considering multiple metrics, the following vector
can be written:

‖x(tk)‖�∞ =

⎡
⎢⎢⎢⎣

‖x1(tk)‖�∞
‖x2(tk)‖�∞

...
‖xn(tk)‖�∞

⎤
⎥⎥⎥⎦ ∈ Z

n
+. (15)

Based on these considerations, the following inequali-
ties are obtained from (13)5:

‖x(tk)‖�∞ � ‖x̄(tk)‖�∞ +
∥∥∥

k∑
l=1

Ψ(k, l)x(tl−1)
∥∥∥

�∞
.

(16)

Here, we define a matrix expression with positive ele-
ments,

‖Θ(tk)‖�∞ :=

⎡
⎢⎣
‖θ11(tk)‖�∞ . . . ‖θ1n(tk)‖�∞

...
. . .

...
‖θn1(tk)‖�∞ . . . ‖θnn(tk)‖�∞

⎤
⎥⎦ ,

where

‖θij(tk)‖�∞ =
∥∥∥

k∑
l=1

ψij(k, l)xj(tl−1)
∥∥∥

�∞
/‖xj(tk)‖�∞

‖θij(tk)‖�∞ ∈ R+ i, j = 1, 2, · · · , n.

Therefore, inequality (16) can be written as:

‖x(tk)‖�∞ � ‖x̄(tk)‖�∞+‖Θ(tk)‖�∞ ·‖x(tk)‖�∞ . (17)

Moreover, it can be written as follows:

(
I − ∥∥Θ(tk)

∥∥
�∞

)
‖x(tk)‖�∞ � ‖x̄(tk)‖�∞ . (18)

Here, we consider the following simultaneous “equality”:

(
I − C

)
X = Y , (19)

where C � 0, X � 0 and Y � 0 are correspond to∥∥Θ(tk)
∥∥

�∞
, ‖x(tk)‖�∞ and ‖x̄(tk)‖�∞ , respectively.

5Inequality symbols for matrices and vectors are defined based on [10].

6. STABILITY AND SECURITY
CONDITIONS

With respect to the simultaneous equation (19), the
following propositions can be obtained [5, 10-14].

Lemma. For any 0 � Y < ∞, we can obtain
0 � X < ∞ if and only if A = I −C is a nonnegative-
inverse matrix [10] (i.e., Ostrowski’s M -matrix).
Proof. The proof is obtained from the property of M -
matrix (i.e., A−1 � 0). �

Based on the above, the stability and security (i.e., bound-
ednes) conditions are given as follows.

Definition. If ‖x̄(tk)‖�∞ = Y < ∞ leads to
‖x(tk)‖�∞ = X < ∞ for all k ∈ N, the event-driven
discrete system is defined as stable in a relative sense [5].
Thus, the following theorem is given.
Theorem. If A = I − C = I − ‖Θ(tk)‖�∞ is a
nonnegative-inverse matrix (i.e., Ostrowski’s M -matrix),
the system is stable (and bounded) in a relative sense.
That is, a finite X ∈ Z

n
+ can be obtained for any Y ∈

Z
n
+. Thus, the security is of course satisfied.

Proof. The proof is obviouly obtained from the above
Lemma. �

Incidentally, the condions of M -matrix for A = I − C
are given as follows.

(1) ρ(C) := max
1≤i≤n

|λi| < 1

(2) The principal minors of A are all positive (i.e.,
∆i > 0, 1 ≤ i ≤ n).

Here, λi are eigenvalues of C.

7. NUMERICAL EXAMPLES

Example 1. Consider the following recurrent third-
order system constructed by an irreducible structure ma-
trix [15]:⎡

⎣
x1

x2

x3

⎤
⎦

k+1

=

⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦

⎡
⎣

x1

x2

x3

⎤
⎦

k

+

⎡
⎣

e1 0 0
0 e2 0
0 0 e3

⎤
⎦

k

⎡
⎣

x1

x2

x3

⎤
⎦

k

The nominal system of this example contains a periodic
mode with p = 3 as shown in Fig. 7 (a). Here, we assume
the event-driven signals e1, e2, and e3 are as shown in
Fig. 10. Figure 11 shows state traces from x1(0) = −2.0,
x2(0) = 2.0, and x3(0) = 1.0 for tk < 200. The
state trace representation in the 3D coordinates is given
as shown in Fig. 12. The response is pseudo-periodic and
obviously bounded (i.e., relatively stable) for tk < 200.

Fig. 10 Time series of event signals, e1 = 0.03, e2 =
−0.03, and e3 = 0.02.
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Fig. 11 State traces when x1(0) = −2.0, x2(0) = 2.0,
and x3(0) = 1.0.

Fig. 12 A state trace in the 3D coordinates when x1(0) =
−2.0, x2(0) = 2.0, and x3(0) = 1.0 (tk < 200).

∆1 ∆2 ∆3

Fig. 13 Time series of ∆1, ∆2, and ∆3.

The stability condition is given below:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆1 = 1 − ‖θ11(tk)‖�∞ > 0

∆2 = (1 − ‖θ11(tk)‖�∞ )(1 − ‖θ22(tk)‖�∞ )

− ‖θ12(tk)‖�∞‖θ21(tk)‖�∞ > 0

∆3 = (1 − ‖θ11(tk)‖�∞ )(1 − ‖θ22(tk)‖�∞ )(1 − ‖θ33(tk)‖�∞ )

− ‖θ12(tk)‖�∞‖θ23(tk)‖�∞‖θ31(tk)‖�∞
− ‖θ13(tk)‖�∞‖θ32(tk)‖�∞‖θ21(tk)‖�∞
− (1 − ‖θ11(tk)‖�∞ )‖θ23(tk)‖�∞‖θ32(tk)‖�∞
− (1 − ‖θ22(tk)‖�∞ )‖θ13(tk)‖�∞‖θ31(tk)‖�∞
− (1 − ‖θ33(tk)‖�∞ )‖θ12(tk)‖�∞‖θ21(tk)‖�∞ > 0.

Figure 13 shows the time-sequences of ∆i (i =
1, 2, 3). As is obvious from the figure, the stability
(bounded) condition will be satisfied (in fact, ∆i > 0
for tk < 200).

Next, when considering event signals as shown in Fig.
14, the time series of state traces become as shown in Fig.
15. Fig. 16 shows the state trace in the 3D coordinates.
In this case, the boundedness (i.e., securitiy) will not be
guaranteed. The time-sequences of ∆i (i = 1, 2, 3) be-
come as shown in Fig. 17.

Fig. 14 Time series of event signals, e1 = 0.05, e2 =
−0.05, and e3 = 0.02.

Fig. 15 State traces when x1(0) = −2.0, x2(0) = 2.0,
and x3(0) = 1.0.

Fig. 16 A state trace in the 3D coordinates when x1(0) =
−2.0, x2(0) = 2.0, and x3(0) = 1.0 (tk < 200).

∆1 ∆2 ∆3

Fig. 17 Time series of ∆1, ∆2, and ∆3.

Example 2. Consider the following fourth-order system
with a irreducible structure matrix:

⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦

k+1

=

⎡
⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎦

⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦

k

+

⎡
⎢⎣

e1 0 0 0
0 e2 0 0
0 0 e3 0
0 0 0 e4

⎤
⎥⎦

k

⎡
⎢⎣

x1

x2

x3

x4

⎤
⎥⎦

k

The nominal system of this example contains a peri-
odic mode with p = 4 as shown in Fig. 8 (a). In this
example, event-driven signals e1, e2, and e3 are assumed
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Fig. 18 Time series of event signals, e1 = 0.05, e2 =
−0.05, e3 = 0.02, and e4 = −0.02.

Fig. 19 State traces when x1(0) = −3.0, x2(0) = 2.0,
x3(0) = 1.0, and x4(0) = −1.0.

Fig. 20 A state trace in the 3D coordinates when x1(0) =
−3.0, x2(0) = 2.0, and x3(0) = 1.0 x4(0) = −1.0
(tk < 200).

∆1 ∆2 ∆3 ∆4

Fig. 21 Time series of ∆1, ∆2, ∆3, and ∆4.

to be as shown in Fig. 18. Figure 19 shows state traces
from x1(0) = −3.0, x2(0) = 2.0, x3(0) = 1.0, and
x4(0) = −1.0 for tk < 200. Although the state trace of
fourth-order systems cannot be expressed in the 3D coor-
dinates, the general view of variables only x1, x2, and x3

is given in Fig. 20. As are obvious from these figures, the
stability and security (boundedness) will be garanteed in
a limited range. For a reference, the time-sequences ∆1,
∆2, ∆3, and ∆4 of this example are shown in Fig. 21..

8. CONCLUSIONS

There are many event-driven types of discrete control
systems in practice. Therefore, in this paper, the (finite-
time) stability of event-driven control systems has been
studied. First, the lattice concept based on ordered sets
was reviewed in general. Then, integer lattice coordinates
were introduced, and the stability and security (bounded-
ness) of event-driven discrete control systems was ana-
lyzed using multiple metrics and simultaneous linear in-
equalities. As a result, a theorem based on nonnegative
marices and M -matrices was derived. Numerical exam-
ples clarify the stability and security of event-driven types
of discrete control systems. The result will be useful for
some discrete event systems.
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[4] B. Schröder, Ordered Sets; An Introduction with
Connections from Combinatorics to Topology (2nd
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