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Abstract– Nowadays there are many event-driven types of discrete control systems in practice, e.g., man-
ufacturing automation systems, industrial and welfare robots, networked control systems, and so on. There-
fore, in this paper, the (finite-time) stability of event-driven (in other words, event-based) control systems is
studied. First, the lattice concept based on ordered sets is reviewed in general and the graphical represen-
tations of discrete event systems are compared. Then, the (technological) state transitions are considered
on (integer) lattice/grid coordinates. Lastly, the stability of such event-driven discrete systems is analyzed
using multiple metrics and simultaneous linear inequalities. Numerical examples are shown to clarify the
stability and boundedness of event-driven control systems.
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1 Introduction
At present, there are many event-driven types of

discrete systems in practice, e.g., manufacturing sys-
tems, industrial and welfare robots, computer net-
worked systems, and so forth. Therefore, in this pa-
per, the (finite-time) stability of event-driven (in other
words, event-based) control systems is studied. First,
the lattice concept based on ordered sets is reviewed
in general and the graphical representations of event-
driven type of discrete systems are compared. Espe-
cially, in this paper, the topological representations of
discrete systems will be regarded as important. Then,
the (technological) state transitions are considered on
(integer) lattice/grid coordinates. Lastly, the stability
of such event-driven discrete systems is analyzed using
multiple metrics and simultaneous linear inequalities.

Incidentally, in order to avoid becoming compli-
cated, most of the event-driven discrete systems con-
sidered here will be restricted to third-order ones.

2 Ordered Sets and Lattices
Suppose a binary relation R on a given set E satis-

fying the following properties:

(1) Reflexive (∀x ∈ E) (x, x) ∈ R.

(2) Anti-symmetric (∀x, y ∈ E) if (x, y) ∈ R and
(y, x) ∈ R then x = y.

(3) Transitive ∀x, y, z ∈ E if (x, y) ∈ R and (y, z) ∈
R then (x, z) ∈ R.

In these descriptions, whenever (x, y) ∈ R, x, y ∈ E
are referred to as ‘R-related’ and often written as
xRy1, 2).

Based on the above thoughts, R is called a partial
order or, simply, an order relation. Moreover, the set
E with the partial order is called a partially ordered
set or, simply, ‘poset’. When specifying the relation
R we will use the expression (E;R).

The word ‘partial’ is used in defining a partially
ordered set E since some of the elements of E need
not be comparable. On the other hand, if any two

elements of E are comparable, E is said to be totally
ordered or linearly ordered, and E is called a chain 1.

An example of the quantitative relation is ≤ (“less
than or equal to”) which is regarded as the usual or-
der. In this case, the above properties are written
as1, 4):

(1) (∀x ∈ E) x ≤ x.

(2) (∀x, y ∈ E) if x ≤ y and y ≤ x then x = y.

(3) (∀x, y, z ∈ E) if x ≤ y and y ≤ z then x ≤ z.

When using the expression (E;R), the above relation
can be specified as (E;≤). Of course, with respsect to
the relation ≥ (“greater than or equal to”) the similar
description can be given.

On the other hand, in regard to the qualitative re-
lation the following symbols will be used:

�, �
instead of ≤, ≥. Here, x � y, x � y are read “x
precedes y” and “x succeeds y”, respectively2).

From the above premise, we can define a lattice as
follows.
Definition.
A lattice is an ordered set L in which every pair of
elements (and hence every finite subset) has an infi-
mum (meet) and a supremum (join). Thus we often
denote a lattice by (L; ∧, ∨) or (L; ∧, ∨, ≤). �

In mathematics, ‘lattice’ is translated into Japanese
as “soku”. The author thinks that the translation
is not appropriate. A lattice means originally wood
frames (“koushi”) of the door or window, which are
found in Japanese traditional house. In the previous
papers, the author has used ‘grid’ for grid frame coor-
dinates. A ‘grid’ means originally metallic ones (e.g.,
screen-grid in an electron tube). However, each of
them is translated into Japanese as the same word,
“koushi”. In this paper, ‘lattice’ will be used in the
mathematical meaning 1, 3, 4).

1The sets N, Z, Q, R of natural numbers, integers, rationals,
and real numbers form chains under their usual orders.
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Fig. 1: Hasse diagram.

3 Graph Representations

3.1 Directed Graph and Hasse Diagram

The structure of lattice is easy to understand by
using some graphic representations. Figure 1 shows
examples of lattice with six vertices. The left of the
figure, (a), is drawn based on the directed graph (us-
ing directed edges)2. However, we sometimes place
c higher than a and draw a line (without an arrow)
between them as shown in (b). It is then understood
that an upward movement indicates succession (other-
wise precession). Such a graph representation is refer
to as the Hasse diagram1, 2, 3, 4, 5).

3.2 Matrices and Tables

A matrix and also a table will represent the sys-
tem structure clearly. The matrix is translated into
Japanese as “gyoretsu”. However, it is known that
the word ‘matrix’ is originated from “botai”, really
‘mother’. Thus, the translation in Japanese would not
be always appropriate since “gyoretsu” in Japanese
corresponds to ‘queue’ in English.

In the first half of this paper, since only system
structures are considered, we assume that matrices
are simply given as follows:

A ∈ I
n×n ⊆ Z

n×n, I = {−1, 0, 1}.

Moreover, to avoid becoming complicated, only third-
order discrete systems are considered. The matrix
expressions, for example, are given as follows:

A1 =

⎡
⎣0∗ 0 1

1 0∗ 1
1 0 ∗0

⎤
⎦ , A2 =

⎡
⎣0∗ 1 0

0 0∗ 1
1 1 ∗0

⎤
⎦ ,

Here, the symbol 0∗ denotes 0 or 1. When there exists
a self-loop as shown in a signal flow graph, it become
‘1’ . Of course, in the linear algebraic expression it
may be any real number.

On the other hand, the tabular expressions are
given as Table 1.

2A directed graph (digraph) is written by G(V, E). Here, V
are called vertices, nodes, or points, and E are called arcs or
directed edges or simply edges 6, 7). It should be noted that
an oriented graph is a directed graph which has no symmetric
pair of directed edges. However, either of them translated into
Japanese “yuko”graph or “teiko” graph.

(a) (b)

Fig. 2: Matrices and directed graph.

Fig. 3: Signal flow graph.

Table 1: Relation between matrices and table.

(a) (b)

x1 x2 x3

x1 0∗ 0 1
x2 1 0∗ 1
x3 1 0 0∗

x1 x2 x3

x1 0∗ 0 0
x2 1 0∗ 1
x3 1 1 0∗

When using the directed graph expression they can
be drawn as shown in Fig. 2

3.3 Linear Algebra and Signal Flow Graph
When considering the linear algebra and the state

trasmission, the following transposed matrices are
used:

AT
1 =

⎡
⎣0∗ 1 1

0 0∗ 0
1 1 0∗

⎤
⎦ , AT

2 =

⎡
⎣0∗ 0 1

1 0∗ 1
0 1 ∗0

⎤
⎦ ,

With respect to AT
2 we assume that there exists a

self-loop for x2. In this case, the state transmission
can be expressed as:⎡

⎣x1(tk+1)
x2(tk+1)
x3(tk+1)

⎤
⎦ =

⎡
⎣0 0 1

1 1 1
0 1 0

⎤
⎦ .

⎡
⎣x1(tk)

x2(tk)
x3(tk)

⎤
⎦

k = 0, 1, 2, . . . .

Therefore, when we use the signal-flow-graph repre-
sentation, the above equation can be expressed as
shown in Fig. 3.

4 Lattice Coordinates
In regard to the usual orthogonal coordinates (par-

allel coordinates in general), the following lattice
properties will be satisfied1, 2, 3, 4, 5):



Fig. 4: A basic 3D lattice.

Fig. 5: An example of 3D lattice.

4.1 Distributive and Modular Lattices
(1) L is said to be distributive if it satisfies the dis-

tributive law

(∀x, y, z ∈ L) z ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

(2) L is said to be modular if it satisfies the modular
law

(∀x, y, z ∈ L) x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z.

4.2 Integer Lattice Coordinates
Even if states and events are qualitative ordered

sets, we can replace them with (positive) integer num-
bers (i.e., a chain) as follows:

x0
i ≺ x1

i ≺ x2
i ≺ · · · ≺ xN

i

↓ ↓ ↓ ↓
0 1 2 · · · N.

Of course, the above correspondence can be expanded
to negative numbers. Figures 4 and 5 show 3D ex-
pressions of lattices. Obviously, Fig 4 will correspond
to a boolean lattice4). It should be noted that the
subgraph drawn by bold lines corresponds to Fig. 1
(b). In these figures. the coordinates is drawn only
for the first quadrant.

Incidentally, it should be noted that the fundamen-
tal properties of lattice is lost by the existence of dot-
ted lines in Figs. 1 (a), (b), and Fig. 4.
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Fig. 6: State trajectories.
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Fig. 7: State transition graph.

5 Event-Driven Discrete Systems and
State Transition

Figure 6 shows an example of state (or output)
trajectories of a first-order (event-driven) discrete
system. As is obvious from the figure, the event-
sequence {e1e2e3e3e2 · · · } ({e3e1e1e4e3 · · · }) corre-
sponds to time sequence {t1t2t3t4t5 · · · }. However,
the causality relationship between them will be oppo-
site. Figure 7 shows their state transition graphs.

In general, event-driven types of discrete systems
can be written as

x(tk+1) = f(x(tk),e(tk))

k = 0, 1, 2, . . . .

As is obvious from the figure, the time sequence
t0, t1, t2, . . . is not periodic for these event-driven sys-
tems. However, they can also correspond to integer
numbers.

Here, in order to study the relative stability prob-
lem, we consider the following semi-linear discrete sys-
tems.

x(tk+1) = Φ(tk+1, tk)x(tk) + f(x(tk),e(tk)). (1)

The transition matrix Φ(·, ·) is considered time-
invariant and written as

P := Φ(tk+1, tk) ∈ Z
n×n, ∀k ∈ N. (2)

If we simplify it only system structure, the transition
matrix may be written as:

P ∈ I
n×n ⊆ Z

n×n, I := {−1, 0, 1}. (3)

In regard to time-invariant nominal systems, the fol-
lowing will be valid from (2):



(1) Φ(tk, tl) = Pk−l,

(2) Φ(tk, tl) = P0 = I.

Thus, when the nominal system is periodic, the fol-
lowing property can be obtained:

(3) Φ(tk+p, tk) = Pp = I, p ∈ N : period.

By expanding (1), the following equation is ob-
tained:

x(tk) = Φ(tk, t0)x(t0)+
k∑

l=1

Φ(tk, tl)f(x(tl−1),e(tl−1)).

(4)
Using (2), it can also be written as follows:

x(tk) = Pkx(t0) +
k∑

l=1

Pk−lf(x(tl−1,e(tl−1))).

k = 0, 1, 2, . . . . (5)

In any case, the nominal system can be given as fol-
lows:

x̄(tk) = Φ(tk, t0)x(t0) = Pkx(t0) ∈ Z
n. (6)

In this paper, the event driven function f is simplified
as

εii(tk) =
fi(x(tk),e(tk))

xi(tk)
∈ R. (7)

In regard to a diagonal matrix, the following expres-
sion can be written:

E(tk) =

⎡
⎢⎣

ε11(tk) · · · 0
...

. . .
...

0 · · · εnn(tk)

⎤
⎥⎦ . (8)

Based on the above premises, (5) can be written as:

x(tk) = Pkx(t0) +
k∑

l=1

Pk−lE(tl−1)x(tl−1). (9)

Here, let us consider a new type of transition matrix,
i.e.,

Ψ(k, l) := Pk−lE(tl−1).

Thus, (9) can be rewritten as follows:

x(tk) = x̄(tk) +
k∑

l=1

Ψ(k, l)x(tl−1), (10)

where x̄(tk) = Pkx(t0) is the nominal state response.

6 Multiple Metrics and Inequalities
The metric in the state space (i.e., vector space) is

usually defined by a scalar value. However, it may
lead to a severe condition for the stability of some
kind of nonlinear systems. Therefore, we consider the

metric (i.e., norm) for each element of the state as
follows:

‖xi(tk)‖�∞ := sup
1≤l≤k

|xi(tl)| ∈ Z+ (11)

or simply the absolute value,

‖xi(tk)‖�∞ := |xi(tk)| ∈ Z+. (12)

When considering multiple metrics, the following vec-
tor can be written:

‖x(tk)‖�∞ =

⎡
⎢⎢⎢⎣
‖x1(tk)‖�∞
‖x2(tk)‖�∞

...
‖xn(tk)‖�∞

⎤
⎥⎥⎥⎦ ∈ Z

n. (13)

Based on these considerations, the following in-
equalities are obtained from (10):

‖x(tk)‖�∞ � ‖x̄(tk)‖�∞ +
∥∥∥ k∑

l=1

Ψ(k, l)x(tl−1)
∥∥∥

�∞
.

(14)
Here, we define a matrix expression with positive ele-
ments,

‖Θ(tk)‖�∞ =

⎡
⎢⎣
‖θ11(tk)‖�∞ . . . ‖θ1n(tk)‖�∞

...
. . .

...
‖θn1(tk)‖�∞ . . . ‖θnn(tk)‖�∞

⎤
⎥⎦ ,

(15)
where,

‖θij(tk)‖�∞ :=
∥∥∥ k∑

l=1

ψij(k, l)xj(tl−1)
∥∥∥

�∞
/‖xj(tk)‖�∞

i, j = 1, 2, · · · , n. (16)

Therefore, inequality (14) can be written as:

‖x(tk)‖�∞ � ‖x̄(tk)‖�∞ + ‖Θ(tk)‖�∞ · ‖x(tk)‖�∞ .
(17)

Moreover, it can be written as follows:(
I − ∥∥Θ(tk)

∥∥
�∞

)
‖x(tk)‖�∞ � ‖x̄(tk)‖�∞ . (18)

7 Nonnegative-Inverse Matrix and
Stability Conditions

By using the above inequality expressions, the sta-
bility analysis of event-driven discrete systems is given
as follows.
Definition.
If ‖x̄(tk)‖�∞ � X̄ leads to ‖x(tk)‖�∞ � X for all
k ∈ N, the discrete event system is defined as (finite-
time) stable in a relative sense 8). Here, X and X̄
are vectors of some finite (positive) numbers. �

Thus, the following theorem is given.
Theorem 1.
If there exists a vector 0 � X < ∞ by which the



Fig. 8: Time series of event signals, e1 = 0.08, e2 =
−0.08, and e3 = −0.02.

following equation holds in regard to a vector X̄ with
(bounded) positive elements:

(I − ‖Θ(tk)‖�∞X � X̄, (19)

the discrete event system is (finite-time) stable in a
relative sense.

In other words, the matrix of the left side of (19),
i.e.,

A(tk) = I − ‖Θ(tk)‖�∞ (20)

is a nonnegative-inverse matrix9) (i.e, Ostrowski’s M-
matrix10)), the system becomes (finite-time) stable in
a relative sense.
Proof. If (20) is a nonnegative-inverse matrix, (17)
can be written as follows:

‖x(tk)‖�∞ �
(
I − ∥∥Θ(tk)

∥∥
�∞

)−1

‖x̄(tk)‖�∞ < ∞.

(21)
Therefore, the relative stability of event-driven sys-
tems (9) and (10) has been proved. �

8 Numerical Examples
Example 1. First, consider the following recurrent
third-order system:⎡
⎣x1

x2

x3

⎤
⎦

k+1

=

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦

k

+

⎡
⎣e1 0 0

0 e2 0
0 0 e3

⎤
⎦

k

⎡
⎣x1

x2

x3

⎤
⎦

k

.

(22)
The structure matrix is given below:

P =

[
0 1 0
0 0 1
1 0 0

]
, P2 =

[
0 0 1
1 0 0
0 1 0

]
, P3 =

[
1 0 0
0 1 0
0 0 1

]
.

Obviously, the nominal system of this example con-
tains a periodic mode with p = 3. Assumed that
event-driven signals e1, e2, and e3 are as shown in
Fig. 8. Figs. 9 and 10 are state trajectories from
different initial conditions. The former is unstable
(divergent) case and the latter is stable (bounded)
pseudo-periodic case.

From (15), A(tk) in Theorem 1 can be written as:

A(tk) = I − ‖Θ(tk)‖�∞ =[
1 − ‖θ11(tk)‖�∞ −‖θ12(tk)‖�∞ −‖θ13(tk)‖�∞−‖θ21(tk)‖�∞ 1 − ‖θ22(tk)‖�∞ −‖θ23(tk)‖�∞−‖θ31(tk)‖�∞ −‖θ32(tk)‖�∞ 1 − ‖θ33(tk)‖�∞

]
.

Fig. 9: State trajectories in 3D phase space when
x1(0) = 3.0, x2(0) = 4.0, and x3(0) = 1.0).

Fig. 10: State trajectories in 3D phase space when
x1(0) = −2.0, x2(0) = 2.0, and x3(0) = −2.0).

Therefore, the stability condition is given
below11, 12, 13, 14):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆1 = 1 − ‖θ11(tk)‖�∞ > 0
∆2 = (1 − ‖θ11(tk)‖�∞)(1 − ‖θ22(tk)‖�∞)

− ‖θ12(tk)‖�∞‖θ21(tk)‖�∞ > 0
∆3 = (1 − ‖θ11(tk)‖�∞)(1 − ‖θ22(tk)‖�∞)(1 − ‖θ33(tk)‖�∞)

− ‖θ12(tk)‖�∞‖θ23(tk)‖�∞‖θ31(tk)‖�∞
− ‖θ13(tk)‖�∞‖θ32(tk)‖�∞‖θ21(tk)‖�∞
− (1 − ‖θ11(tk)‖�∞)‖θ23(tk)‖�∞‖θ32(tk)‖�∞
− (1 − ‖θ22(tk)‖�∞)‖θ13(tk)‖�∞‖θ31(tk)‖�∞
− (1 − ‖θ33(tk)‖�∞)‖θ12(tk)‖�∞‖θ21(tk)‖�∞ > 0.

(23)

Figure 11 shows ∆1, ∆2, and ∆3 of this example. As
is shown in the figure, the stability (bounded) condi-
tion is satisfied at least in the time domain (tk ≤ 100).

∆1 ∆2 ∆3

Fig. 11: The principal minors, ∆1, ∆2, and ∆3.



Fig. 12: State trajectory when x1(0) = 2.0, x2(0) =
3.0 and x3(0) = 1.0.

∆1 ∆2 ∆3

Fig. 13: The principal minors, ∆1, ∆2, and ∆3.

Example 2. Next, consider the following third-order
system:⎡
⎣x1

x2

x3

⎤
⎦

k+1

=

⎡
⎣ 0 1 1
−1 0 0
0 0 −1

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦

k

+

⎡
⎣e1 0 0

0 e2 0
0 0 e3

⎤
⎦

k

⎡
⎣x1

x2

x3

⎤
⎦

k

.

(24)
The structure matrix is given below:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P =

⎡
⎣ 0 1 1
−1 0 0
0 0 1

⎤
⎦ , P2 =

⎡
⎣−1 0 −1

0 −1 −1
0 0 1

⎤
⎦

P3 =

⎡
⎣0 −1 0

1 0 1
0 0 −1

⎤
⎦ , P4 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

In this example, the nominal system contains a pe-
riodic mode with p = 4. The event-driven signals e1,
e2, and e3 are the same as shown in Fig. 8. Figure
12 shows the state trajectory of this example. Here,
we will apply Theorem 1 to this problem. Figure 13
shows ∆1, ∆2, and ∆3 of this example. As shown in
the figure, the stability condition is satisfied at least
in the time domain (tk ≤ 100).

9 Conclusions
The stability of event-driven control systems has

been studied using multiple metrics on lattice coordi-
nates. First, the lattice concept (and theory) based on
ordered sets was reviewed in general and the graph-
ical representations of event-driven discrete systems
were compared. Then, the (technological) state tran-
sitions were considered on the (integer) lattice co-
ordinates. Lastly, the stability of such event-driven

discrete systems was analyzed using multiple metrics
and simultaneous linear inequalities. Although event-
based control systems have been already studied15),
the author thinks that those problems correspond to
the traditional analysis and design of nonlinear feed-
back systems with a switching element.
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